Bài tập trắc nghiệm Hình học 12: Phương trình mặt phẳng (phần 2)
A. 2x + 2y + z - 8 = 0
D. x + 2y + 2z - 9 = 0
Câu 7: Trong không gian Oxyz, cho mặt phẳng (P) có phương trình (m2 - 2m)x + y + (m - 1)z + m2 + m = 0, trong đó m là tham số. Với những giá trị nào của m thì mặt phẳng (P) song song với trục Ox ?
A. m=0 B. m=2 C. m=0 hoặc m=2 D. m=1
Câu 8: Trong không gian Oxyz, cho hai mặt phẳng (P) : x + 2y - 2z + 1 = 0, (Q): 2x + 4y + az + b = 0. Tìm a và b sao cho khoảng cách giữa hai mặt phẳng đó bằng 1.
A. a=-4 và b=8 C. a=-2 và b=38 hoặc b=-34
B. a=-4 và b=8 hoặc b=-4 D. a=-4 và b=38 hoặc b=-34
Câu 9: Trong không gian Oxyz, cho mặt cầu (S) có phương trình là x2 + y2 + z2 - 2x - 4y + 6z + 5 = 0 và cho mặt phẳng (P) : x - 2y + 3z + 3 = 0. Khẳng định nào dưới đây là đúng ?
A. (P) giao (S) theo một đường tròn
B. (P) tiếp xúc với (S)
C. (P) không cắt (S)
D. Mặt phẳng (P) đi qua tâm của mặt cầu (S)
Câu 10: Trong không gian Oxyz, cho ba điểm thay đổi A(a; 0; 0), B(0; b; 0), C(0; 0; c) trong đó a, b, c khác 0 và thỏa mãn điều kiện 3ab + bc - 2ac = abc . Khoảng cách lớn nhất từ O đến mặt phẳng (ABC) là:
A. 14 B. √14 C. 1/√14 D. Không tồn tại
Hướng dẫn giải và Đáp án
6-D
|
7-B
|
8-B
|
9-A
|
10-B
|
Câu 6:
Ta có OA ⊥ OB, OC => OA ⊥ (OBC) => OA ⊥ BC .
Mặt khác ta có AM ⊥ BC nên ta suy ra BC ⊥ (OAM) => BC ⊥ OM
Chứng minh tương tự ta được AC ⊥ OM . Do đó OM ⊥ (ABC).
Ta chọn nP→ = OM→ = (1; 2; 2). Từ đó suy ra phương trình của mặt phẳng (P) là :
1(x - 1) + 2(y - 2) + 2(z - 2) = 0 <=> x + 2y + 2z - 9 = 0
Lưu ý. Bài toán này có thể giải bằng cách tìm tọa độ của các điểm A, B, C dựa vào các điều kiện
Câu 7:
Ta có nP→ = (m2 - 2m; 1; m - 1). Mặt phẳng (P) song song với trục Ox khi và chỉ khi
Từ đó ta được m=2.
Vậy đáp án B là đáp án đúng.
Lưu ý. Học sinh thường chỉ để ý đến điều kiện (1) và quên mất điều kiện (2), từ đó sẽ chọn đáp án (C)
Câu 8:
Muốn khoảng cách giữa hai mặt phẳng (P) và (Q) lớn hơn 0 thì trước hết hai mặt phẳng đó phải song song (nếu hai mặt phẳng đó trùng nhau hoặc cắt nhau thì khoảng cách giữa chúng sẽ bằng 0). Do đó ta có:
Lấy điểm A(-1;0;0) ∈ (P). Khi đó ta có:
Vậy đáp an đúng là B.
Lưu ý. Đáp án A sai là do khi tính khoảng cách quên không lấy giá trị tuyệt đối
Đáp án D sai, xuất phát từ sai lầm khi tính khoảng cách bị sai do thiếu căn thức ở mẫu số.
Đáp án C sai, do trong trường hợp đó hai mặt phẳng cắt nhau, khoảng cách giữa hai mặt phẳng này sẽ bằng 0.
Câu 9:
Mặt cầu (S) có tâm I(1;2;-3) và có bán kính
Khoảng cách từ tâm I đến mặt phẳng (P) là:
Do đó mặt phẳng (P) giao với mặt cầu (S) theo một đường tròn và (P) không đi qua tâm I của (S).
Vậy đáp án đúng là A.
Câu 10:
Phương trình của mặt phẳng (ABC) là:
Theo giả thiết ta có:
Từ đó suy ra M(1; -2; 3) ∈ mp(ABC) .
Gọi H là hình chiếu vuông góc của O trên mp(ABC). Ta có:
Dấu bằng xảy ra khi và chỉ khi H trùng M.
Vậy đáp án đúng là B